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Impulse-Controlled Process: Intuitive Description

Example:

Xt = x0 +

∫ t

0
µ(Xs)ds +

∫ t

0
σ(Xs)dWs +

∑
k:τk≤t

Zk.

Here (τ,Z) = {(τk,Zk) : k ∈ N} is an impulse policy satisfying
▶ each τk is a stopping time;
▶ each Zk is a measurable r.v. with respect to the information

available at time τk; and
▶ the sequence {τk} is non-decreasing.

Question: What is a precise model for such a process?



The Usual Approach
Robin (1978), Stettner (1983), Lepeltier and Marchal (1984), etc.

Define the countable product measurable space

Ω̃ =
∞∏

k=0
Ωk =

∞∏
k=0

Ω G̃ =
∞⊗

k=0
Fk =

∞⊗
k=0

F .

Intuition. Use component Ωk to determine the impulse-controlled
process X over the interval [τk, τk+1).

Question. What restrictions are imposed on the policy

(τ,Z) = {(τk,Zk) : k ∈ N}?

Each τk must be a stopping time . . . but with respect to which
filtration?
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Different Filtrations for Different Interventions
▶ τ1 must be a stopping time w.r.t. the filtration {F (0)

t } with

F (0)
t = σ(X0(u) : 0 ≤ u ≤ t)

in which X0 is the coordinate process on Ω0. The impulse Z1 is
F (0)

τ1 -measurable.

▶ τ2 must be a stopping time w.r.t. the filtration {F (1)
t } where

F (1)
t = σ(X1(τ1+u) : 0 ≤ u ≤ t)

with X1 being the coordinate process on Ω1. The impulse Z2 is
F (1)

τ2 -measurable.

▶ In general, τk must be a stopping time w.r.t. the filtration {F (k−1)
t }

having
F (k−1)

t = σ(Xk(τk−1+u) : 0 ≤ u ≤ t);
again, Xk denotes the coordinate process on component Ωk. The
impulse Zk is required to be F (k−1)

τk -measurable.



Impulse Control Model for Continuous Processes

Our Contribution
▶ Ω = DE [0,∞).
▶ All decisions are made relative to the natural filtration

generated by the coordinate process X.
▶ The interventions have random effects; namely, each

intervention selects a distribution of the new location
following the impulse.

▶ Identify a class of policies for which the controlled process is
Markov.

▶ Determine a class of policies for which the controlled process
has independent (and identically distributed) cycles.



Model Fundamentals

▶ E , the state space (a complete separable metric space).
▶ Ω := DE [0,∞), the space of càdlàg functions.
▶ X : Ω → DE [0,∞), the coordinate process so X(t, ω) = ω(t)

for all t ≥ 0 and ω ∈ Ω.
▶ F = σ(X(t) : t ≥ 0).
▶ {Ft} is the natural filtration: Ft := σ(X(s), 0 ≤ s ≤ t).
▶ {Px, x ∈ E} is a family of probability measures on (Ω,F) so

that
(Ω,F ,X, {Ft}, {Px, x ∈ E})

is a Markov family.

Standing Assumption
For each x ∈ E, Px has its support in CE [0,∞) ⊂ Ω.



Model Fundamentals: Uncertain Impulse Mechanism

▶ Let (Z,Z) be a measurable space representing the impulse
control decisions.

▶ Let Q = {Q(y,z) : (y, z) ∈ E × Z} be a given family of
probability measures on E such that

for each Γ ∈ B(E), the mapping
(y, z) 7→ Q(y,z)(Γ) is B(E)⊗ Z-measurable.



To Accommodate a Possible First Jump at Time 0 ...

▶ Every ω ∈ DE [0,∞) is right continuous at 0
⇝ This precludes the possibility of an intervention occurring
at time 0.

▶ We need to augment the space DE [0,∞) so that it contains
the location from which the intervention occurs.

1. Set Ω̌ = E × DE [0,∞) and F̌ = B(E)⊗F .
Denote elements ω̌ ∈ Ω̌ by ω̌ = (ω̌(0−), ω̌(·)).

2. Extend the coordinate process X on DE [0,∞) to Ω̌ by defining
X(0−, ω̌) = ω̌(0−) while keeping X(s) = ω̌(s) for s ≥ 0.

3. Set F̌t = B(E)⊗Ft, F̌t− = B(E)⊗Ft−, for t ≥ 0.
4. For each x ∈ E , extend the measure Px on (Ω,F) to a measure

P̌x on (Ω̌, F̌) by putting full mass on the subset
{ω̌ ∈ Ω̌ : ω̌(0−) = x}.

▶ (Ω̌, F̌ ,X, {F̌t}, {P̌x : x ∈ E}) is still a Markov family.
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Nominal Impulse Policy

A nominal impulse policy (τ,Z) = {(τk,Zk) : k ∈ N} is a sequence
of pairs defined on (Ω̌, F̌) in which:

▶ τ1 is an {F̌t−}-stopping time and for k ≥ 2, τk is an
{Ft−}-stopping time;

▶ for each k ∈ N, on the set {τk < ∞}, τk+1 > τk;

▶ limk→∞ τk = ∞;

▶ for each k ∈ N, Zk is a Z-valued, Fτk−/Z-measurable random
variable (Z1 being F̌τ1−/Z-measurable).



The Existence Result

Theorem 1
Let (τ,Z) be a nominal impulse policy. For each k ∈ N, define the
pre-impulse location Yk = X(τk−) with the nominal impulse being
Zk on the set {τk < ∞}. Set τ0 = 0. Then there exists a family of
probability measures {P(τ,Z)

x : x ∈ E} on (Ω̌, F̌) under which the
coordinate process X satisfies the following properties:
(a) under P(τ,Z)

x for each x ∈ E , X(0−) = x a.s. and moreover, for
each k ∈ N,

(i) X is the fundamental Markov process on the interval [τk−1, τk);
(ii) on the set {τk < ∞}, Q(Yk,Zk) is a regular conditional

distribution of X(τk) given Fτk−; and

(b) for each F ∈ F̌ , the mapping x 7→ P(τ,Z)
x (F) is universally

measurable.



Stationary Markov nominal impulse policy

A stationary Markov nominal impulse policy is a nominal impulse
policy (τ,Z) = {(τk,Zk) : k ∈ N} for which there exist measurable
functions σ : Ω → (0,∞] and z : E → Z such that:
(a) for each k ≥ 1, τk = τk−1 + σ ◦ θτk−1 ; and on the event

{τk−1 < ∞}, for each u ≥ 0,

{σ ◦ θτk−1 > u} ⊂ {σ ◦ θτk−1 = u + σ ◦ θτk−1+u};

(b) Zk = z(X(τk−)).

Theorem 2
For a stationary Markov nominal impulse policy (τ,Z),
(Ω̌, F̌ ,X, {F̌t}, {P(τ,Z)

x : x ∈ E}) is a Markov family.
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Policies with Independent Cycles

An independent-cycles nominal impulse policy is a nominal impulse
policy (τ,Z) for which for each k ∈ N:
(a) there exists a random time σk such that τk = τk−1 + σk ◦ θτk−1

on the set {τk−1 < ∞}; and
(b) on the event {τk < ∞}, the intervention (τk,Zk) is such that

Q(Yk(ω),Zk(ω)) does not depend on ω.

Proposition 3
Let ν ∈ P(E), (τ,Z) be an independent cycles nominal impulse
policy and let (Ω̌, F̌ ,P(τ,Z)

ν ) and X be the probability space and
coordinate process, respectively. Then the cycles
{X(t) : τk ≤ t < τk+1} for k ∈ N0 are independent.
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An Example

▶ Let E = R and fix y ∈ R.
▶ Select the target location z > y to which the controlled process

aims to jump.
▶ Suppose supp(Q(y,z)) = [y1, z], with y1 > y.

Challenge: To define a nominal policy (τ,Z) for every ω̌ ∈ Ω̌, not just
those with specific discontinuities.

▶ Zk(ω̌) = z, ∀k ∈ N, ω̌ ∈ Ω̌.
▶ τ1(ω̌) := inf{t ≥ 0 : ω̌(t−) ≤ y, ω̌(s) > y for 0 ≤ s < t} =: σ(ω̌).

▶ for k ∈ N, define τk+1(ω̌) = ∞ if ω̌(τk) /∈ [y1, z]; otherwise, define

τk+1(ω̌) = inf{t ≥ τk(ω̌) : ω̌(t−) = y, ω̌(s) > y,∀s ∈ [τk(ω̌), t)}
= τk(ω̌) + σ ◦ θτk(ω̌).
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Ergodic Inventory Control with Random Effects
Formulation: The Inventory Process

▶ The inventory process (in the absence of orders):

dX0(t) = µ(X0(t))dt+σ(X0(t))dW(t), X(0) = x0 ∈ I = (a, b),

where −∞ ≤ a < b ≤ +∞.

▶ demands tend to reduce the inventory ⇝ a is an attracting
point:

Px{τa+ ≤ τr} > 0, ∀a < x < r < b.

a may be a regular (reflective or sticky), exit, or natural
boundary point.

▶ reasonable restrictions on “returns”: the inventory level can
never reach b in finite time ⇝ b is a non-attracting point:

Px{τb− ≤ τr} = 0, ∀a < r < x < b.

b may be an entrance or natural point.
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▶ Let R = {(y, z) ∈ E2 : y < z}, where y denotes the pre-order
and z the nominal post-order inventory levels, resp.

y

z
(b, b)

(a, a)

(a, b)

a
b

R



Formulation: Uncertain Impulse Mechanism

Let Q = {Q(· ; y, z) : (y, z) ∈ R} denote the collection of
probability measures so that
(i) for each (y, z) ∈ R, Q(· ; y, z) ∈ P(E);
(ii) for each Γ ∈ B(E), the mapping

(y, z) 7→ Q(Γ; y, z) is B(R)-measurable.

Examples:
1. Q(· ; y, z) = δ{z}(·)
2. Q(· ; y, z) = θδ{z}(·) + (1 − θ)Unif(y, z), θ ∈ (0, 1).
3. Q(· ; y, z) = Unif((1 − (z/k)j)y + (z/k)jz, z).
4. ...
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Formulation: Admissible Policies

▶ A = {(τ,Z) = (τk,Zk), k = 1, 2, . . . }, in which
▶ {τk} is a strictly increasing sequence of {Ft−}-stopping times

with limk→∞ τk = ∞,
▶ Zk ∈ E is {Fτk−}-measurable with Zk > X(τk−).

▶ For models in which a is a reflecting boundary point, the class
A0 ⊂ A consists of those policies (τ,Y) for which

lim
t→∞

t−1E[La(t)] = 0,

where La denotes the local time of X at a.
Remarks:
▶ Zk is the nominal “order-to” location.
▶ The actual post-jump location X(τk) is determined by

Q(·;X(τk−),Zk) ∈ P(E) and may be different from Zk.



Long-term Average Cost

▶ c0 : I → R+: holding/back-order cost rate.
▶ c1 : R → R+: ordering cost function.
▶ ∃k1 > 0 s.t. c1 ≥ k1; thus k1 is the fixed cost for each order.

Long-term Average Cost:

J(τ,Z) := lim sup
t→∞

1
tEx0

[∫ t

0
c0(X(s))ds

+
∞∑

k=1
I{τk≤t}c1(X(τk−),X(τk))

]
.



The (s, S) Policy

Questions: Does an optimal policy exist? Is the (s,S)-policy
optimal? How to find an optimal (s,S) policy?



The Strategy

1. First examine the inventory process under the (s,S)-policy
with s = y and S = z:
▶ The cost of such a policy is given by a nonlinear function

H0(y, z), y < z.
▶ An optimal (s∗,S∗)-policy exists under certain conditions.

2. Then we establish optimality of the (s∗,S∗) ordering policy in
the general class of admissible policies via weak convergence.



The Strategy

1. First examine the inventory process under the (s,S)-policy
with s = y and S = z:
▶ The cost of such a policy is given by a nonlinear function

H0(y, z), y < z.
▶ An optimal (s∗,S∗)-policy exists under certain conditions.

2. Then we establish optimality of the (s∗,S∗) ordering policy in
the general class of admissible policies via weak convergence.



The Inventory Process under the (s, S)-Policy
▶ The process X has a unique stationary distribution; and the

long-run frequency of orders can be found.
▶ Then, the cost of such a policy (s = y,S = z) is given by

J(τ,Y) = ĉ1(y, z) + B̂g0(y, z)
B̂ζ(y, z)

, (1)

where

g0(x) := 2
∫ x

x0

∫ b

u
c0(v)dM(v)dS(u), ζ(x) := 2

∫ x

x0

M[u, b)dS(u),

and x0 ∈ I is the initial inventory.

For any f and (y, z) ∈ R,

Bf(y, z) := f(z)− f(y), f̂(y, z) :=
∫ z

y
f(y, v)Q(dv; y, z).



Nonlinear Optimization of H0
▶ Define

H0(y, z) :=
ĉ1(y, z) + B̂g0(y, z)

B̂ζ(y, z)
,∀(y, z) ∈ R.

y

v
(b, b)

(a, a)

(a, b)

a bE3̃

y

E5
z̃

E6

E4
E1

zε

E2

yε



Nonlinear Optimization and Optimal (s, S) Policy

Under certain conditions:
▶ H0 is lower semicontinuous on compact subsets of R.
▶ There exists a pair (y∗0, z∗0) ∈ R such that

H0(y∗0, z∗0) = H∗
0 := inf

{
H0(y, z) : (y, z) ∈ R

}
. (2)

▶ The (y∗0, z∗0)-policy is optimal in the class of all (s,S) ordering
policies

H∗
0 = H0(y∗0, z∗0) = J(τ∗,Z∗).

Remark: If H∗
0 = 0, then there is no optimal policy.



Expected Occupation and Ordering Measures

Define for t > 0

µ0,t(Γ0) :=
1
tE

[∫ t

0
IΓ0(X(s)) ds

]
, Γ0 ∈ B(E),

ν1,t(Γ2) :=
1
tE

[ ∞∑
k=1

I{τk≤t}IΓ2(X(τk−),Zk)

]
, Γ2 ∈ B(R).

(3)

If a is a reflecting boundary, define the average expected local time
measure µ2,t

µ2,t({a}) = 1
tE[La(t)], t > 0,

in which La denotes the local time of X at a.



J(τ,Z) := lim sup
t→∞

1
tE

[ ∫ t

0
c0(X(s)) ds +

∞∑
k=1

I{τk≤t}c1(X(τk−),X(τk))

]
= lim sup

t→∞

∫
c0(x)µ0,t(dx) +

∫
ĉ1(y, z)ν1,t(dy × dz).



The Auxiliary Function U0 and its Approximation Un

Define
U0(x) = g0(x)− H∗

0ζ(x), x ∈ E .

▶ U0 ∈ C(E) ∩ C2(I) is a solution of the system
Af(x) + c0(x)− H∗

0 = 0, x ∈ I,
B̂f(y, z) + ĉ1(y, z) ≥ 0, (y, z) ∈ R
f(x0) = 0,
B̂f(y∗0, z∗0) + ĉ1(y∗0, z∗0) = 0.

Define for n ∈ N

Un(x) =
U0(x)

1 + 1
nh(U0(x))

, x ∈ E ,

where h(x) = (−1
8x4 + 3

4x2 + 3
8)I{|x|≤1} + |x|I{|x|>1}.
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Key Observations

Let (τ,Y) ∈ A0 with J(τ,Y) < ∞. Let {tj : j ∈ N} be a sequence such
that limj→∞ tj = ∞ and

J(τ,Y) = lim
j→∞

1
tj
E
[∫ tj

0
c0(X(s))ds +

∞∑
k=1

I{τk≤tj}c1(X(τk−),X(τk))

]
= lim

j→∞

(∫
E

c0(x)µ0,tj(dx) +
∫
R

ĉ1(y, z) ν1,tj(dy × dz)
)

= lim
j→∞

(∫
E
(AUn(x) + c0(x))µ0(dx)

+

∫
R
(B̂Un(y, z) + ĉ1(y, z)) ν1,tj(dy × dz)

)
, ∀n ∈ N,

where µ0,tj ⇒ µ0 as j → ∞.



Key Observations (cont’d)

Because U0 satisfies

AU0 + c0(x)− H∗
0 = 0 and B̂U0(y, z) + ĉ1(y, z) ≥ 0,

we can show by weak convergence that

lim inf
n→∞

lim inf
j→∞

∫
R
(B̂Un(y, z) + ĉ1(y, z)) ν1,tj(dy × dz) ≥ 0,

and

lim inf
n→∞

∫
E
(AUn(x) + c0(x))µ0(dx) ≥

∫
E
(AU0(x) + c0(x))µ0(dx)

≥ H∗
0.



Optimality

J(τ,Y)

= lim inf
n→∞

lim
j→∞

(∫
E
(AUn(x) + c0(x))µ0,tj(dx)

+

∫
R
(B̂Un(y, z) + ĉ1(y, z)) ν1,tj(dy × dz)

)
≥ lim inf

n→∞
lim inf
j→∞

∫
E
(AUn(x) + c0(x))µ0,tj(dx)

+ lim inf
n→∞

lim inf
j→∞

∫
R
(B̂Un(y, z) + ĉ1(y, z)) ν1,tj(dy × dz)

≥ lim inf
n→∞

∫
E
(AUn(x) + c0(x))µ0(dx)

+ lim inf
n→∞

lim inf
j→∞

∫
R
(B̂Un(y, z) + ĉ1(y, z)) ν1,tj(dy × dz)

≥ H∗
0.



Optimality of the (s, S)-Policy

Theorem 4
(a) Let (τ,Y) ∈ A0. Then

J(τ,Y) ≥ H∗
0.

(b) Moreover, the (s,S)-policy with s = y∗0 and S = z∗0 is an
optimal impulse policy.



Example: Logistic Storage Model

▶ Inventory level (in the absence of control)

dX0(t) = −µX0(t)(1 − X0(t)) dt + σX0(t)(1 − X0(t)) dW(t),

▶ For each (y, z) ∈ R, Q(·; y, z) is the ‘z-shifted uniform
distributions’ on the interval [(1 − (z/k)j)y + (z/k)jz, z] for
some j ∈ N.

▶ Assume

c0(x) = k0(x − x̄)2 and c1(y, z) = k1 + k2(z − y),

for some k0, k1, k2 > 0 and x̄ ∈ (0, 1).



Numerical Results

Model 1: σ = 0 and Q(·; y, z) = δ{z}(·);
Model 2: σ = 1

10 and Q(·; y, z) = δ{z}(·);
Model 3: σ = 1

10 and Q(·; y, z) = the z-shifted uniform distribution;

Model From To Mean Cost Mean
Supply Cycle Length

Model 1 0.40567 0.59433 0.188661 0.938043 15.2759
Model 2 0.381724 0.56993 0.188206 1.00067 15.2779
Model 3 0.384973 0.6575 0.138321 1.33092 11.2843

Table 1: Comparison of Three Logisitic Inventory Models.



Optimal Harvesting Problem with Mean Field Interactions

▶ The growth of the forest:

dX0(t) = µ(X0(t))dt + σ(X0(t))dW(t), X0(0) ∈ (0,∞).

▶ A particular forest owner’s harvesting policy:
Q := {(τk,Yk), k = 1, 2, . . . }. The resulting controlled forest:

X(t) = X(0)+
∫ t

0
µ(X(s))ds+

∫ t

0
σ(X(s))dW(s)−

∞∑
k=1

I{τk≤t}Yk

where Yk := X(τk−)− X(τk) ≥ 0.



▶ The other agents in the market adopt the harvesting strategy
R := {(σk,Zk), k = 1, 2, . . . } and the resulting average supply
of log is

κR := lim
t→∞

1
tE

[ ∞∑
k=1

I{σk≤t}(X(σk−)− X(σk))

]
.

▶ Given K > 0 and a payoff function γ : R× (0,∞) 7→ R+, the
expected reward for the forest owner is

Jx(Q,R) := lim inf
t→∞

1
tEx

[ ∞∑
k=1

I{τk≤t}(γ(X(τk),X(τk−), κR)−K)
]
,

where R := {(w, y) ∈ (0,∞)× (0,∞) : w < y}.



Equilibrium

To find an admissible harvesting policy Q∗ so that

Jx(Q,Q∗) ≤ Jx(Q∗,Q∗), ∀Q admissible.



Assume
▶ Both the speed measure M and the scale function S of the

process X0 are absolutely continuous with respect to the
Lebesgue measure.

▶ The left boundary 0 is a non-attracting point and the right
boundary ∞ is a natural point. Moreover, M[0,∞) < ∞.

▶ The drift function µ is continuously differentiable. Moreover,
there exists a y1 > 0 so that µ is strictly increasing on (0, y1]
and strictly decreasing on [y1,∞).

▶ The scale density s satisfies limx→∞ s(x) = ∞.

▶ γ(w, y, z) = φ(z)(y − w) for a decreasing and strictly positive
function φ.



Theorem 5
An equilibrium harvesting strategy Q∗ exists. Moreover, Q∗ is of
(s,S)-type, which can be found by the fixed point of the mapping
Φ : R → R defined by Φ(w, y) := g ◦ f(w, y), where

f(w, y) := y − w
ξ(y)− ξ(w) , g(z) := argmax

w<y

φ(z)(y − w)− K
ξ(y)− ξ(w)

and
ξ(x) =

∫ x

x0

M[0, v]dS(v).



Thank you!
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